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ABSTRACT \,)

Numerical results are presented for the lithium hydride
molecule, obtained by different techniques of the constrained
variation method. The constrained wave function, the degree
to which the constraint is satisfied, and the saérifice in
energy are compared, The constraint operator used was the
electronic dipole moment in one case and the total Hellmann-
Feynman force in another. 1In both cases, the parametrization
procedure in the direct solution approach (Method IB) was

found to be superior.
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INTRODUCTION

The calculation of expectation values of operators other
than the energy has been of considerable interest to quantum
chemists. Recently Brown1 formulated a perturbation approach
to the constrained variation method which had previously been
developed by Whitman and coworkers,2’3 To obtain a direct solution

for the constrained wave function, Rasiel and Whitman2 proposed
an iterative scheme, but they did not carry it out much beyond
the first iteration. The constrained wave function, however,
can be determined accurately without any approximations in a
straightforward manner when the basis set is small. The
purpose of this paper is to present a comparison of numerical
results for lithium hydride obtained by these methods and to

discuss their relative merits.

CONSTRAINED VARIATION METHODS

Let ’ﬂ be the Hamiltonian of the system and let ’I ¢ and 61

1

be the approximate ground state wave function and energy as
calculated by a free variation. Consider an operator 77L which

does not cqommute with the Hamiltonian

1. W. Byers Brown, University of Wisconsin Theoretical Chemistry
Institute Report WIS-TCI-109G (1965).

2. Y. Rasiel and D. R. Whitman, J. Chem. Phys., 42, 2124 (1965).

3. D. R. Whitman and R. Carpenter, Bull. Am. Phys. Soc.,
9, 231 (1964).
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The constrained variaticn procedure involves determining a

constrained wave function SP which minimizes the energy
E=<§ijfl‘:P>/<§P,f> (2)

subject to a constraint

M

Yl ®

where

M <i3,7%9_;>/< ¢ g (4)

and /,l is an experimental or theoretical constant within the
bounds of M,

It is convenient to define a constraint operator
C-m- (5)

so that the constraint condition (3) becomes

C = M-pM =0, (6)




where
c = <f,‘g¥’.>/_<f,5?>. (7)

The constrained variation principle can be rewritten
< §¢ . (HN-e) ¥ > =0, ®)
where 7’0[ is a (fictitious) constrained Hamiltonian

ﬂ =%+A<@o ¢))

and /\ is a Lagrangian multiplier, the determination of which

will be discussed below.

Linear Variation

It is convenient to use the solutions ¢. of the free
: J
variation problem as the basis set, sc that the overlap matrix S
is a unit matrix and the free Hamiltonian matrix % is diagonal,
with hij = Sij 65. . 1f the constrained wave function is

written

¥ . Z a, ¢j , (10)
]

where the coefficients alj are to be determined, then
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where C is the matrix representation of the constraint operator

& inthe @ basis.

The secular equation and secular determinant are

(H - El)a= o0 (13)

=)
]

et {H-€1} =9 (14)

where

H

h + AC - Qs)

and )\ still has to be determined.

Direct Solution

As a first CJ/Cle in the iterative scheme of Rasiel and
. 2,4 ‘
Whitman to solve Eqs. (12) and (13) for the aj and )\ , the

assumption

AE = E- €. ~ A (16)




is made in order to cobtain approximate expressions for aj( A)
from Eq. (13). These are then substituted into Eq. (12),resulting
in a vanishing polynomial in A . Finally, all terms in A
and higher are neglected and the subsequent quadratic equation

in A is solved for the root which gives a smaller positive

A E. This solution will be called Method IA.

As Brown1 pointed out,
dE/N = < ¥, €Y >/<¥¢,F > =¢c =0 (17)

Therefore, A and subséquently the ::1j can be obtained by
parametrization of D . In other words, Eq. (14) is solved with
trial values of A until interpolation and iteration lead to a
value of A at which E is a saddle point (minimum with

respect to the coefficients alj and maximum with respect fo A ).
However, numerical computations show that the energy E is not
very sensitive to A at the saddle point, so that A can only

be calculated to within i0.00000S,ThereFore, at each trial value

insfead/of A > Eq. (13) is solvedgand the solutions a:.l are substituted

into Eq. (12). A few linear interpolations lead to the A at
which C = 10-9 , much beyond the accuracy of the imput matrices.

We shall call this Method IB.

4. Y. Rasiel, Ph,D. Thesis, Case Institute of Technology, 1964.



Perturbation Approach

1 ,
On the other hand, Brown considered the operator %? as a

per turbation to f{ with A as the perturbation parameter. Thus,

Eq. (17) leads to
n L™ (18)

where E(n) is the familiar n-th order energy in perturbation

theory and cah be evaluated by standard formulas for expansions
. . . . 5
in unperturbed eigenfunctions as basis set.

Inversion of the

series in Eq. (18) then gives

2 2.3 3904 5
A-op- a0 + [-a, +2a376” + [-a, + 58,8, - 585]6" + C7(§ ),

(19)

where
6 = - = £, 25?)) (20)
A = ne™ 2@y (21)

5. J. 0. Hirschfelder, W. Byers Brown, and S. T. Epstein,
"Recent Developments in Perturbation Theory" in Advances
in Quantum Chemistry, (Academic Press Inc., New York; 1964).
The sign in Eq. (II-10) on p. 266 should be positive.




The energy and expectation values of other operators can
be calculated in two ways which are closely related. 1In the
first case, which will be called Method ITIA, straightforward
single and double perturbation proc:eduresl’5 are applied. The

. !
sacrifice in energy is given by
ol
AR = Z N g (22)
n=1

To find the expectation value L of some other operator i 3

let us consider another fictitious Hamiltonian
% = J'L +7.t = £+ /\‘g +7I, (23)

where both >\ and /1 are perturbation parameters; and let us
assume that the minimum variational energy 5 can be expanded as a

double power series

E =§ i’ /\nrrk é(n,k). (24)
n=0 k=0

Then, according to Brown,

DE T 0 g,
YT oy )7=0 :Z(; X E®D s




In this work, we have continued the series in Eqs. (19), (22),
and (25) up to terms involving 64 5 E(S) , and 6(3’1)
respectively, one more term in each case than Brown did. Owing to
the fact that the basis set used in the present work is small,
these series still have not converged when truncated.

Finally, in Method 1IB, the first, second, and third order

wave functions are determined using well-kncwn perturbation theory

methods.5 A truncated constrained wave function is then found
r
=@ + AL L XD, By (26)

and expectation values are calculated with this function.
LiH WAVE FUNCTION

To demonstrate the application of the constrained variation
o , 2 1 C .
method, Rasiel and Whitman, and Brown wused a variationmal function
. , 6 .
for LiH calculated by Robinson. It is a three~term open-shell
valence-bond configuration interaction function with a basis set

of six Slater-type atomic orbitals,

3

¢ = chk M. (27)

k=1

6. J. M. Robinson, Ph.D. Thesis, University of Texas, 1957.




where the three configurations Tl I have besn given explicitly by
Rasiel and Whitman:.:2 This function was alsc chosen for our
comparative studies for its simplicity and the availability of

all the primitive matrix elements (in the 7’{ basis).G’2 However,
during the course of our investigation, it was found that some

of the off-diagonal elements cf the transformed free Hamiltonian
matrix (in the ¢ basis) are as large as 9 x 10_1+ hartree.
Therefore, the free variation prcblem was solved again. The

solutions we obtained are

S
[
]

0.1807573 7?1 - 0.0026450 71 2 + 0.1619637 )‘13

@, =-0.0737250 ], + 0.35200287] , - 0.0697765 1] , (28)
@, = 0.8035686 N, +0.3440879 7], - 0.8818488 7],
with
61 =  -9.058791 hartrees
€, = -8.908329 (29)
€, = -6.618735,

The electronic energy of the ground state is essentially the same
as Robinson's - 9.058777 hartrees; but the ¢j‘ are slightly
different, with the result that the largest off-diagonal element

-7
of the transformed free Hamiltonian }? is now 3 x 10 hartree.
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Therefore, all the transformed matrices are computed in the ¢
basis represented by Eq. (28), rather than by Eq. (14) of

Reference 2.
CONSTRAINT OPERATOR

Two cases have been considered in this work. In the first
case, the electronic dipole moment is constrained to agree with
the experimental value obtained by Wharton, Gold, and Klemperer.
Thus,

4
m = . Zy (30)
i=1

where Zi is measured in a coordinate system in which the Li
nucleus is at the origin and the H nucleus is on the positive
Z-axis at the internuclear distance of 3.0132976 ao ; after the
nuclear contribution has been subtracted from the experimental

; and ﬁg has

.
dipole moment of 5.882 debyes, /K is 5.3276 ea,

been defined in Eq. (5) as 771-=/4
In the second case we studied, the constraint is that the
total molecular Hellmann-Feynman force should vanish. In this

case, the constraining procedure cezses to be semi-empirical

7. L. Wharton, L. P. Goid, and W. Kiemperer, J. Chem. Phys.,
37, 2149 (1962).

-_—
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. 8~ .
since the Hellmann-Feynman theorem 10 requires that the expectation
value of this force operator vanishes when averaged over the

correct wave function. Thus, /L is zero and

3 cos ei (1i) ces Oi(H)

” - eZZ{ , o } (31)
s U [ra0d” [r;a]Z J7

where the spherical coordinate variables are identical to those of

Miller, Gerhauser, and Matsen.11
RESULTS AND DISCUSSION

The results of calculations according to the schemes
IA, 1B, 1IA, and IIB are listed in Table I, where the electronic
dipole moment has been constrained, and in Table II, where the
total Hellmann-Feynman force is the constraint.

From Tables I and II, one can make the fqllowing general
remarks about the success of the different constraining
techniques. Firstly, the constrained wave function coefficients
aj as well as A appear to be very similar in both the direct

solution and perturbation approaches. However, the degree to

8. H. Hellmann, Einfuhrung in die Quantenchemie (Deuticke,
Leipzig, 1937), p. 285.

9. R. P. Feynman, Phys. Rev., 56, 340 (1934).

10. R. F. W. Bader and G. A. Jones, Can. J. Chem., 41,
255, 586 (1963); J. Chem. Phys., 38 2791 (1963).

11. J. Miller. §. M JGerhsuser and F. A. Matsen, Quantum
Chemistr, Integrals and Tables (University of Texas Press,

Austin, 1959}, p. 1l1.




which the imposed constraint is satisfied as measured by how closely

¢ = <;§P9 ?g SF > approaches zero, varies widely among the
<P, ¥>
different techniquec.

Comparing the two direct solutiom approaches, one can easily
see that Method IB is superior to Method TA in accuracy, both
as to adhererice to the constraint and minimization of the energy.
However, YA is more suitable for desk calculator work and took
only half a minute on a CDC G-15 computer. On the other hand,
with computer subroutines for matrix diagonalization widely
available, IB can be easily progrsmmed for electronic computers
and requires about four minutes for each trial value of A on
the CDC G-15. 1In practice, we used TA to determine an
approximate value of A which was employed as an initial
guess in 1B,

It should be pointed out that Method IA represents the
first cycle in an iterative scheme. Omne could substitute the
value of A into the terms in >§ and higher in the polynomial
from Eq. (12) and solve the new quadratic equation for a better
value of A\ and consequently a better set of coefficients aj .
When convergence occurs, both A and AE could be substituted
into the higher order terms of Eq. (13) in order to improve on
the assumption expressed by Eq. (16). However, considering the
accuracy of Method IB, we feel that it hardly seems worth the

effort to pursue further iterations beyond the first cycle as

12



carried out in IA.

While the direct sciut-con 2pprozch iz more successful in this
case than the perturbaticrs tecnzizues due to the slcw cenvergence
cf the latter, we believe that the iztter shcuid be recommended
for functions wittllanger basis sets. As the basis set becomes

much larger, Method IA 1scses its irherent simplicity and

v

becomes unwieldy £for desk calculatcre, while IB may take prohibitive
computer time. Mcrecver, the pe-turceticn apprcach is expected
to converge faster since the perturbztion can be better expressed

in terms of the enlarged basis cet. This expectation is realized
. . . o . 12

in a preliminary study on a system with a large basis set.
Actually, Methcds IIA and IIB shculd be used in conjunction, since
IIA furnishes the value of A for use in IIB, while IIB gives

a further check on the convergence cf IIA and provides a

as a direct calculation of the

-

constrained wave functiocn zs wel
expectation value of the constraint cperator.

To provide further compariscn of the ceonstraining techniques,
the following other physical prcperties were calculated: the

adherence to the virial theorem, -T/E ; the molecular

total

quadrupole moment megsured relative to the center of mass, Q(cm) 5
. . . . s d . .

diamagnetic contribution to the susceptibility, )( ; and diamagnetic

. . . a4 d
contributions tc the protecn arzd litnium shielding comstants, O .

12. D. P. Chong, unpublished results; using as ¢g the 28-term
LiH wave functicuns of . Browne and F. A. ﬁatsen,

i f C.
35A, 1227 (1964, and private communication.
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The results are presented 1in Tables II] The physical
constants used have been tsken frcom the latest set recommended

by the National Academy «f Sciences-National Research Council.

In order to facilitate comparison of using different

o

constraints, C can be made dimensicriless rty defining a set

of reduced quantities

€ - by ¢, (32)
C* - C/cp (33)
c* = ¢/ Ciq (34)
A= Ag (35)

Then

fi

H-o AL NG (36)

~ 7

and C* takes on the value of unity for the free variation
function ¢H and the value of zerc for the perfectly constrained
function.

Examining the results from this point of view, we find
that Method IB gives a )ﬁ of 0.01206925 for the dipole moment
constraint and 0.005749273 for the total force constraint. Thus,
the slightly better convergence of the perturbation schemes in
the latter case can be better understood.

13. Physics Today, 17, 48 (1964).
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